
Sept. 11, 1997 High-Performance Computing Lab 1

Design, Implementation, and Evaluation
of Task Management in Distributed
Fault-Tolerant Real-Time Systems

Project Investigator: Chao-Ju (Jennifer) Hou

Graduate Students: Bin Wang, Hung-ying Tyan, and Yi Ye

Dept. of Electrical Engineering

The Ohio State University

Columbus, OH 43210-1272

jhou@ee.eng.ohio-state.edu

http://eewww.eng.ohio-state.edu/drcl

Sept. 11, 1997 High-Performance Computing Lab 2

Outline of Presentation

• Project Overview

– Real-time task system
– Task management in real-time task systems
– Software implementation

• Fault-tolerance Components in Our Project

– Replication of critical modules
– Primary and backup workstations for task

transfer

– Checkpointing and rollback recovery

Sept. 11, 1997 High-Performance Computing Lab 3

Real-Time Task System

Every task is characterized by a laxity -- the latest
time a task must start execution in order to meet its
deadline.

• Periodic tasks

– Invoked at fixed time intervals.
– Attributes are usually known a priori.

• Aperiodic tasks

– Invoked randomly in response to
environmental stimuli.

– Attributes are not completely specified.

Sept. 11, 1997 High-Performance Computing Lab 4

Management of Real-Time Task Systems

• The execution of both periodic and aperiodic tasks must be

– logically correct.

– completed before their deadlines.

• Performance is assessed on a per-task basis.

• The probability of dynamic failure defined as the

probability of a task failing to be completed in time, is used

as performance metric.

Sept. 11, 1997 High-Performance Computing Lab 5

Project Objective

• We design, implement, and empirically evaluate a task
management system in distributed real-time environments to
meet the timeliness and logical correctness requirements of
both periodic and aperiodic tasks.

• The project is a combination of two synergistic components:
scheme development in a well-defined analytic framework
and validation with software system building and
experiments.

Sept. 11, 1997 High-Performance Computing Lab 6

Methodology Used

• Task decomposition: Decompose periodic tasks into a set of
communicating modules, and represent them by a task flow
graph.

• Module allocation: Allocate periodic task modules to
workstations subject to precedence constraints and timing
requirements.

• Load redistribution: Dynamically redistribute aperiodic tasks
as they arrive to minimize the probability of dynamic failure.

• Scheduling: Schedule modules/tasks on a node using the
rate-monotonic policy, the earliest-deadline-first policy, or
variations thereof.

Sept. 11, 1997 High-Performance Computing Lab 7

An Example of Task Flow Graph

Entry

M21

M31

Entry

End

M31

Entry

End
T1

T2 T3

T3

End

 L

M23

M24

M25

 L
p

M12

 +

M13 M14

 +

End

M11

Entry

Send

Reply

Sept. 11, 1997 High-Performance Computing Lab 8

Tasks Performed

• Design task allocation and load redistribution schemes.

• Incorporate fault tolerance capabilities by

– identifying and replicating critical modules.

– taking advantage of checkpointing and rollback recovery
techniques.

– coordinating workstations to restart checkpointed
processes in case of failure.

• Currently implement the proposed schemes as a software layer
that lies between OS and application programs to empirically
measure the performance.

Sept. 11, 1997 High-Performance Computing Lab 9

Technical Approaches

• We devise a module allocation scheme to allocate periodic task
modules in a planning cycle so that

– the probability of completing each task with both logical and
timing correctness is maximized,

– task precedence and timing constraints are satisfied.

• We characterize load sharing with three component policies: the
transfer policy, the location policy, and the information policy, and
reduce the possibilities of

 (1) transferring an overflow task to an “incapable node,”

 (2) multiple nodes sending their overflow tasks to the same node;

 (3) excessive task transfers;

 (4) excessive communication and time overheads.

Sept. 11, 1997 High-Performance Computing Lab 10

Module Replication for Fault Tolerance

Given a task flow graph that describes the computation and
communication modules and the precedence and timing constraints
among them, we consider

– which modules are replicated;

– how many copies are replicated for each selected module;

– how to assign the replicas to workstations;

– how to schedule the replicas on each workstation.

with the objective of achieving timely correctness.

Sept. 11, 1997 High-Performance Computing Lab 11

Critical Path Analysis

• Observation: There is no need to replicate modules that are subject

 to less stringent timing requirements.

• Criterion for selecting critical modules:

 LCi - ri < ei + tr ,

 then Mi may not be completed in time in the case of failure.

 where

• LCi is the latest completion time of module Mi,

• ri is the earliest release time of Mi,

• ei is the execution time of Mi,

• tr is the worst-case error recovery time.

Sept. 11, 1997 High-Performance Computing Lab 12

Critical Path Analysis

• Key Step 1: Calculate ri from (1) the invocation time of the task and
(2) the precedence constraints preceding Mi.

• Set ri initially to the invocation time of the task to which Mi belongs.

Then, modify rias

 ri = max { ri , maxj { r j + ej: Mj --> Mi } }

• Key Step 2: Calculate LCi from (1) the deadline of the task and the

precedence constraints after Mi.

• Initially set LCi to the deadline of the task to which Mi belongs. Then,

modify LCi as

 LCi = min { LCi , maxj { LCj - ej: Mi --> Mj } }

Sept. 11, 1997 High-Performance Computing Lab 13

Example of Critical Path Analysis

r = 1 r = 2 r = 3
e = 4 e = 2 e = 4

r = max {0, max{1+4, 2+2, 3+4}}
 = 4

r = 4

LC = 12
e = 4

LC = 9
e = 4

LC = min{14, min{12-4, 9-4}}
 = 5

Task release time=0

Task deadline=14

Sept. 11, 1997 High-Performance Computing Lab 14

• There is a tradeoff between fault tolerance and timing
requirements:

– The larger #replicas, the better fault-tolerance capability.

– Excessive replicas may jeopardize the timely completion of
modules.

• We augment the task system with m replicas for each selected
critical module, and use the module allocation scheme, coupled
with the module scheduling algorithm, to determine the
assignment and scheduling of all modules.

• If there is computation power left, try to increase #replicas until
the required probability of dynamic failure is violated.

Determination of #Replicas

Sept. 11, 1997 High-Performance Computing Lab 15

• We implement the first version as a software layer outside the
OS kernel at the user level, since this design

– eliminates the need to access/change the internals of OS,
– allows us to concentrate on varying the degree of design

complexity and
– is portable and can be ported to any POSIX-compliant

platforms.

• We configure the proposed mechanism into three daemons,
Collector, Schedd, Startdd. Two additional processes, Shadow
and Starter, run on the submitting node and the server node,
respectively, when a task is remotely executed.

Software Configuration

Sept. 11, 1997 High-Performance Computing Lab 16

Daemon Configuration

���������
���	

����������	
���	
���

������� ����	

������������������ ������

�	

���	��	

���	�
��������
���	��

������	
���

�����
�
�����������
	�

�����
�
�����������
	�

�
�����
������

���
������������������
�

Sept. 11, 1997 High-Performance Computing Lab 17

Fault-Tolerance and Security Features

• Both module allocation and load sharing are performed transparently
to users.

• No code change is needed for user programs; only a relink to the
modified C library is required for user programs.

• We preserve local execution environment for remotely executing
processes via remote system call mechanism.

• We set protection for local file systems; they will not be touched by
remotely executing tasks.

• We design a checkpointing scheme that dynamically varies checkpoint
 interval with respect to message passing frequency to reduce process
 rollback propagation.
• Processes are checkpointed at the end of each checkpoint interval
 and restarted at backup workstations whenever needed.

Sept. 11, 1997 High-Performance Computing Lab 18

Remote System Calls

All environment-related system calls issued by a remote executing task are
• trapped by the modified C system call stubs, and
• forwarded to the Shadow on the home node which acts as an agent and

executes the system calls on behalf of the task.

�����
�������

����������

���
�����

���
�
��

������

����������

���
�����

������

������
������
��

trap to kernel
return control

���������	
�������������	
���

Sept. 11, 1997 High-Performance Computing Lab 19

���������
���	

����������	
���	
���

������� ����	

������������������ ������

�	

���	��	

���	�
��������
���	��

������	
���

�����
�
�����������
	�

�����
�
�����������
	�

�
�����
������

• The state of a process is transferred in the form of checkpointing files.
• Starter causes a running task to checkpoint by sending it the signal SIGTSTP.
• Starter sends the checkpoint file to Shadow which will restart the
 checkpointing file at a backup workstation in case of server workstation failure.
• We design a location policy which
– avoids the situation of multiple nodes sending their overflow tasks to the
 same node;

– selects, with the criteria of timely correctness and load balance, a backup
 workstation for executing the checkpointing file.

